SPRING 2025 MATH 590: QUIZ 11

Name:

1. Find the JCF and the change of basis matrix for $A = \begin{pmatrix} 0 & 25 \\ -1 & 10 \end{pmatrix}$. (5 points)

Solution. $p_A(x) = \begin{vmatrix} x & -25 \\ 1 & x - 10 \end{vmatrix} = x^2 - 10x + 25 = (x - 5)^2 \cdot E_5 = \text{ null space } \begin{pmatrix} -5 & 25 \\ -1 & 5 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & -5 \\ 0 & 0 \end{pmatrix}$. Thus, $\begin{pmatrix} 5 \\ 1 \end{pmatrix}$ is a basis for E_5 , so the JCF is $\begin{pmatrix} 5 & 1 \\ 0 & 5 \end{pmatrix}$.

To find the change of basis matrix, take v_2 , any vector not in E_5 , say $v_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Then we take $v_1 = \begin{pmatrix} -5 & 25 \\ -1 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -5 \\ -1 \end{pmatrix}$, so that $P = \begin{pmatrix} -5 & 1 \\ -1 & 0 \end{pmatrix}$.

2. Follow the steps below to find the JCF and the corresponding change of basis matrix for $B = \begin{pmatrix} 4 & 0 & -2 \\ 1 & 2 & -1 \\ 2 & 0 & 0 \end{pmatrix}$.

- (i) Find $p_A(x)$ and the single eigenvalue λ .
- (ii) Calculate E_{λ} .
- (iii) Write down the JCF J.
- (iv) Find $v_2 \notin E_{\lambda}$.
- (v) Set $v_1 := (A \lambda I)v_2$. This turns out to be a vector in E_{λ} .
- (vi) Take $v_3 \in E_{\lambda}$ not a multiple of v_1 .
- (vii) Letting P be the matrix whose columns are v_1, v_2, v_3 , verify that $P^{-1}AP = J$. (Hint': You don't have to find P^{-1} to do this.)

Solution. (i) $p_A(x) = \begin{vmatrix} x-4 & 0 & 2\\ -1 & x-2 & 1\\ -2 & 0 & x \end{vmatrix} = -2(-2x+4) + x((x-4)(x-2)) = (x-2)\{x^2-4x+4\} = (x-2)^3$. Thus, 2 is the

only eigenvalue.

(ii)
$$E_2$$
 is the nullspace of $\begin{pmatrix} 2 & 0 & -2 \\ 1 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix} \xrightarrow{\text{EROs}} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, so that $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ form a basis for E_2 .

(iii) The JCF is $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, since the number of Jordan blocks is two.

(iv) Take $v_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

$$(v) \ v_1 = \begin{pmatrix} 2 & 0 & -2 \\ 1 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}.$$

$$(vi) \ We \ can \ take \ v_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \ so \ that \ P = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix}.$$

$$(vii) \ AP = \begin{pmatrix} 4 & 0 & -2 \\ 1 & 2 & -1 \\ 2 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 4 & 4 & 0 \\ 2 & 1 & 2 \\ 4 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} = PJ, \ so \ P^{-1}AP = J$$